Numerical implementation of complex orthogonalization, parallel transport on Stiefel bundles, and analyticity
Authors
Avitabile, D. and Bridges, T.J.
Abstract
Numerical integration of complex linear systems of ODEs depending analytically on an eigenvalue parameter are considered. Complex orthogonalization, which is required to stabilize the numerical integration, results in non-analytic systems. It is shown that properties of eigenvalues are still efficiently recoverable by extracting information from a non-analytic characteristic function. The orthonormal systems are constructed using the geometry of Stiefel bundles. Different forms of continuous orthogonalization in the literature are shown to correspond to different choices of connection one-form on the Stiefel bundle. For the numerical integration, Gauss–Legendre Runge–Kutta algorithms are the principal choice for preserving orthogonality, and performance results are shown for a range of GLRK methods. The theory and methods are tested by application to example boundary value problems including the Orr–Sommerfeld equation in hydrodynamic stability.
Links
DOI PDFBibTeX
@article{avitabile2010numerical,
title={Numerical implementation of complex orthogonalization, parallel transport on Stiefel bundles, and analyticity},
author={Avitabile, Daniele and Bridges, Thomas J},
journal={Physica D: Nonlinear Phenomena},
volume={239},
number={12},
pages={1038--1047},
year={2010},
publisher={Elsevier}
}